Optical study of DNA surface hybridization reveals DNA surface density as a key parameter for microarray hybridization kinetics.

نویسندگان

  • Wolfgang Michel
  • Timo Mai
  • Thomas Naiser
  • Albrecht Ott
چکیده

We investigate the kinetics of DNA hybridization reactions on glass substrates, where one 22 mer strand (bound-DNA) is immobilized via phenylene-diisothiocyanate linker molecule on the substrate, the dye-labeled (Cy3) complementary strand (free-DNA) is in solution in a reaction chamber. We use total internal reflection fluorescence for surface detection of hybridization. As a new feature we perform a simultaneous real-time measurement of the change of free-DNA concentration in bulk parallel to the total internal reflection fluorescence measurement. We observe that the free-DNA concentration decreases considerably during hybridization. We show how the standard Langmuir kinetics needs to be extended to take into account the change in bulk concentration and explain our experimental results. Connecting both measurements we can estimate the surface density of accessible, immobilized bound-DNA. We discuss the implications with respect to DNA microarray detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of surface probe density on DNA hybridization.

The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for the analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in situ label-free optical method. Probe density is controlled...

متن کامل

Multi-technique comparison of immobilized and hybridized oligonucleotide surface density on commercial amine-reactive microarray slides.

To establish a quantitative, corroborative understanding of observed correlations between immobilized probe DNA density on microarray surfaces and target hybridization efficiency in biological samples, we have characterized amine-terminated, single-stranded DNA probes attached to amine-reactive commercial microarray slides and complementary DNA target hybridization using fluorescence imaging, X...

متن کامل

An Efficient Covalent Coating on Glass Slides for Preparation of Optical Oligonucleotide Microarrays

Objective(s): Microarrays are potential analyzing tools for genomics and proteomics researches, which is in needed of suitable substrate for coating and also hybridization of biomolecules.   Materials and Methods: In this research, a thin film of oxidized agarose was prepared on the glass slides which previously coated with poly-L-lysine (PLL). Some of the aldehyde groups of the activated aga...

متن کامل

Study on Sunitinib Adsorption on Graphene Surface as an Anticancer Drug

In recent years, Nano technology and its application have moved to discovering chemicaltherapy drugs. Research, development for finding new targets in tumors, targeting methodsand stabilizing the nano particle in targeted cells is based on drug delivery and its crucialeffect. Examining the computational controlled drug delivery by graphene sheets has becomevery significant due to numerous side ...

متن کامل

Shielding effect of monovalent and divalent cations on solid-phase DNA hybridization: surface plasmon resonance biosensor study

Solid-phase hybridization, i.e. the process of recognition between DNA probes immobilized on a solid surface and complementary targets in a solution is a central process in DNA microarray and biosensor technologies. In this work, we investigate the simultaneous effect of monovalent and divalent cations on the hybridization of fully complementary or partly mismatched DNA targets to DNA probes im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2007